轉動慣量簡介
轉動慣量是剛體轉動時慣性的量度,其量值取決于物體的形狀、質量分布及轉軸的位置。剛體的轉動慣量有著重要的物理意義,在科學實驗、工程技術、航天、電力、機械、儀表等工業領域也是一個重要參量。電磁系儀表的指示系統,因線圈的轉動慣量不同,可分別用于測量微小電流(檢流計)或電量(沖擊電流計)。在發動機葉片、飛輪、陀螺以及人造衛星的外形設計上,精確地測定轉動慣量,都是十分必要的。
對于質量分布均勻,外形不復雜的物體可以從它的外形尺寸的質量分布用公式計算出相對于某一確定轉軸的轉動慣量。對于幾何形狀簡單、質量分布均勻的剛體可以直接用公式計算出它相對于某一確定轉軸的轉動慣量。而對于外形復雜和質量分布不均勻的物體只能通過實驗的方法來精確地測定物體的轉動慣量,因而實驗方法就顯得更為重要。
剛體繞軸轉動慣性的度量。其數值為j=∑ mi*ri^2,式中mi表示剛體的某個質點的質量,ri表示該質點到轉軸的垂直距離。
求和號(或積分號)遍及整個剛體。轉動慣量只決定于剛體的形狀、質量分布和轉軸的位置,而同剛體繞軸的轉動狀態(如角速度的大小)無關。規則形狀的均質剛體,其轉動慣量可直接計得。不規則剛體或非均質剛體的轉動慣量,一般用實驗法測定。轉動慣量應用于剛體各種運動的動力學計算中。
描述剛體繞互相平行諸轉軸的轉動慣量之間的關系,有如下的平行軸定:剛體對一軸的轉動慣量,等于該剛體對同此軸平行并通過質心之軸的轉動慣量加上該剛體的質量同兩軸間距離平方的乘積。由于和式的第二項恒大于零,因此剛體繞過質量中心之軸的轉動慣量是繞該束平行軸諸轉動慣量中的最小者。
(責任編輯:)