被6个男人灌了一夜精子_欧美chengren_欧美精品亚洲网站_女女互磨高h文

2 .三重積分的計算法

( 1 )利用直角坐標

 

(三)例題

1.計算,其中d是由拋物線,y2 = x及直線y = x - 2 所圍成的閉區域。

【 解 】 兩曲線的交點是( 1- 1 )、( 4 , 2 )。積分區域 d (圖 1-3-4 )可表成

從而

 

2.計算,其中 d x 軸、 y 軸和拋物線 y =1 – x2所圍成的在第一象限內的閉區域。

【 解 】拋物線y =1 – x2 x 軸、 y 軸的交點依次為(10)及(01),積分區域 d (圖 1-3-5 )可表成

從而

 

 

 

4.交換積分次序,二次積分

化為

[解」由所給的二次積分,可得積分區域

更換積分次序,得

故選( b )。

 

 

四、平面曲線積分格林公式

(一)平面曲線積分的概念與性質

1 .對弧長的曲線積分的概念與性質

l 為平面內一條光滑曲線弧, f xy)在 l 上有界,將 l 任意劃分成n個小段,第 i 個小段的長度為,( , )為第 i 小段上任一點, max , 若極限

總存在,則稱此極限為fxy)在 l 上對弧長的曲線積分或第一類曲線積分,記作 ,

若曲線形構件 l 在點( x , y )處的線密度為x y ) ,則曲線積分( x , y ) ds 就表示此構件的質量 m ,即

l 為閉曲線時,曲線積分記為f ( x ,y )ds.

第一類曲線積分具有如下性質:

2 對坐標的曲線積分的概念與性質

l為平面內從點 a 到點 b 的一條有向光滑曲線弧,p x y)、 q ( x y) l 上有界,將l任意分成 n 個有向小弧段( i =1,2,…,n; m0= a, mn=b ), = xi – xi-1 ,

= yi – yi-1 .任取( , ,記 =max,若極限

總存在,則稱此極限為pxy)在有向曲線弧 l 上對坐標 x 的曲線積分,記作p(x,y) ds,

類似地定義 q x y )在有向曲線弧l上對y的曲線積分 。q( x ,y )dy ,

對坐標的曲線積分也稱為第二類曲線積分。p (x ,y )dx +q( x, y)dy通常寫成p(x ,y )dx +q(x ,y)dy

若某質點沿有向曲線弧 l 移動,受變力 f = (p (x ,y),q (x ,y))作用,則變力作的功為

對坐標的曲線積分具有如下性質:

其中 l-表示與 l 反向的有向曲線弧。

其中a 為常數。

格林公式

定理  設閉區域 d 由分段光滑的曲線 l 圍成,函數p x y)及 q x y) d 上具有一階連續偏導數,則有

其中 l d 的取正向的邊界曲線。

上述公式稱格林公式。這一公式揭示了閉區域 d 上的二重積分與沿閉區域 d 的正向邊界曲線 l 上的曲線積分之間的聯系,利用這一聯系使得兩種積分的計算可以相互轉化。           

(四)例題

1- 3 - 22 計算半徑為 r 、中心角為 2a 的圓弧l 對于它的對稱軸的轉動慣量 i (線密度μ= 1 )。

【解】 取圓弧的圓心為原點,對稱軸為 x 軸,并使圓弧位于y軸的右側(圖 1 36 ) ,則

                     

l 的參數方程為

于是

 

1- 3 - 23 】計算y2dx,其中l是半徑為 a 、圓心為原點、按逆時針方向繞行的上半圓周(圖 1 -3-7 )。

解】  l 是參數方程為

當參數 0 變到的曲線弧。因此.

               

 

五、積分的應用

(一)定積分的應用

 1 .幾何應用

1 )平面圖形的面積

1 )直角坐標情形

設平面圖形由曲線 y = f x )、y = g x ) f x ) g x ) )和直線 x = a x = b

所圍成(圖 1-3 - 8 ) ,則其面積

 

2 )極坐標情形

設平面圖形由曲線   )及射線a所圍成(圖 1-3-9 ) ,則其面積

2 )體積

l )旋轉體的體積

設旋轉體由曲線 y = f x )與直線 x = a x = b x 軸所圍成的平面圖形繞x軸旋轉一周而成(圖 1-3 -10 ) ,則其體積

 

3 )平面曲線的弧長

 l )直角坐標情形

設曲線的方程為 y = f x ) a  x  b ) , f x )在 [ a b]上具有一階連續導數,則其弧長

2 )參數方程情形

設曲線的參數方程為 x t ) , y t ) at , t )、 t )在[ a,  ]上具有連續導數,則其弧長

3 )極坐標情形

設曲線的極坐標方程為 a ),  )在[ a ]上具有連續導數,則其弧長 s =

 

2 )水壓力

設有平面薄板,鉛直放置水中,取薄板所在平面與水平面的交線為 y 軸,x 軸鉛直向下(圖 1-3 -12 ) ,設薄板的形狀為

則薄板一側所受的水壓力為

其中  為水的密度, g 為重力加速度。

 

(二)二重積分的應用

 1 .曲面的面積

設曲面的方程為 z = f x y) x oy面上的投影區域為 d , f xy)在 d 上具有一階連續偏導數,則曲面的面積

2 .平面薄片的質量、重心及轉動慣量

設平面薄片占有 x oy面上的區域 d ,薄片在 d 上任一點 p x , y )處的面密度為μ( x , y ) ,則薄片的質量為

薄片重心的坐標為

薄片關于 x 軸、 y 軸的轉動慣量為

 

(三)例題

1 -3 -25    計算由兩條拋物線:y2 = x y x2所圍成的圖形的面積。

【解   兩條拋物線所圍成的圖形如圖 1-3-13 所示, x 的變化區間為 [ 0 , 1] ,所求面積為

 

【例 1- 3 -26   計算心形線 a 1 + cos a> 0) 所圍成的圖形的面積。

心形線所圍成的圖形如圖 1-3 -14 所示,的變化區間為 [-,]。所求面積為

 

 

 

【例1 - 3 -29   計算擺線 x = a- sin ) y a 1 cos)的一拱( 0 2)(圖 l -3-15 )的長度。

   的變化區間為 [0 , 2], x ' = a 1 cos ) y’ = asin ,所求弧長為

1-3 – 30  求半徑為 a 的均勻半圓薄片(面密度為常量μ)對于其直徑邊的轉動慣量。

取坐標系如圖1-3-16 所示,薄片所占閉區域

所求轉動慣量即半圓薄片對于 x 軸的轉動慣量

其中m =為半圓薄片的質量。